

The Need to Feed

- Food is taken in, taken apart, and taken up in the process of animal nutrition
- In general, animals fall into three categories:
 - Herbivores eat mainly plants or algae
 - Carnivores eat other animals
 - Omnivores regularly consume animals as well as plants or algae
- Most animals are also opportunistic feeders

Concept 41.1: An animal's diet must supply chemical energy, organic building blocks, and essential nutrients

- An animal's diet must provide
 - Chemical energy for cellular processes
 - Organic building blocks for macromolecules
 - Essential nutrients

© 2017 Pearson Education, Inc.

Essential Nutrients

- Required materials that an animal cannot assemble from simpler organic molecules are called essential nutrients
- These must be obtained from an animal's diet
- There are four classes:
 - Essential amino acids
 - Essential fatty acids
 - Vitamins
 - Minerals

Essential Amino Acids

- Animals require 20 amino acids and can make about half from molecules in their diet
- The remaining amino acids, the essential amino acids, must be obtained from food
- Meat, eggs, and cheese provide all the essential amino acids and are thus "complete" proteins
- Most plant proteins are incomplete in amino acid composition
- Vegetarians can easily obtain all essential amino acids by eating a varied diet of plant proteins

© 2017 Pearson Education, Inc.

Essential Fatty Acids

- Animals can synthesize many of the fatty acids they need
- The essential fatty acids must be obtained from the diet and include certain unsaturated fatty acids (i.e., fatty acids with one or more double bonds)
- Animals typically obtain good amounts of essential fatty acids in their diet

Vitamins

- Vitamins are organic molecules required in the diet in very small amounts
- Thirteen vitamins are essential for humans
- Vitamins are grouped into two categories: *fat-soluble* and *water-soluble*

Vitamin	Major Dietary Sources	Major Functions in the Body	Symptoms of Deficiency				
Nater-Soluble Vitamins							
B ₁ (thiamine)	Pork, legumes, peanuts, whole grains	Coenzyme used in removing CO ₂ from organic compounds	Beriberi (tingling, poor coordina- tion, reduced heart function)				
B ₂ (riboflavin)	Dairy products, meats, enriched grains, vegetables	Component of coenzymes FAD and FMN	Skin lesions, such as cracks at corners of mouth				
B ₃ (niacin)	Nuts, meats, grains	Component of coenzymes NAD ⁺ and NADP ⁺	Skin and gastrointestinal lesions, delusions, confusion				
B_5 (pantothenic acid)	Meats, dairy products, whole grains, fruits, vegetables	Component of coenzyme A	Fatigue, numbness, tingling of hands and feet				
B ₆ (pyridoxine)	Meats, vegetables, whole grains	Coenzyme used in amino acid metabolism	Irritability, convulsions, muscular twitching, anemia				
B7 (biotin)	Legumes, other vegetables, meats	Coenzyme in synthesis of fat, glycogen, and amino acids	Scaly skin inflammation, neuromuscular disorders				
B ₉ (folic acid)	Green vegetables, oranges, nuts, legumes, whole grains	Coenzyme in nucleic acid and amino acid metabolism	Anemia, birth defects				
B ₁₂ (cobalamin)	Meats, eggs, dairy products	Production of nucleic acids and red blood cells	Anemia, numbness, loss of balanc				
C (ascorbic acid)	Citrus fruits, broccoli, tomatoes	Used in collagen synthesis; antioxidant	Scurvy (degeneration of skin and teeth), delayed wound healing				
Fat-Soluble Vitamins							
A (retinol)	Dark green and orange vegetables and fruits, dairy products	Component of visual pigments; maintenance of epithelial tissues	Blindness, skin disorders, impaired immunity				
D	Dairy products, egg yolk	Aids in absorption and use of calcium and phosphorus	Rickets (bone deformities) in children, bone softening in adults				
E (tocopherol)	Vegetable oils, nuts, seeds	Antioxidant; helps prevent damage to cell membranes	Nervous system degeneration				
K (phylloquinone)	Green vegetables, tea; also made by colon bacteria	Important in blood clotting	Defective blood clotting				

// N S	inerals Minerals small amo	are simple inorga ounts	nic nutrients, usu	ally required in
 Tal	ngesting nomeosta ble 41.2 Mineral F	large amounts of tic balance Requirements of Humans*	some minerals ca	an upset
Mi	neral	Major Dietary Sources	Major Functions in the Body	Symptoms of Deficiency
More than 200 mg per day required	(Calcium (Ca)	Dairy products, dark green vegetables, legumes	Bone and tooth formation, blood clotting, nerve and muscle function	Impaired growth, loss of bone mass
	Phosphorus (P)	Dairy products, meats, grains	Bone and tooth formation, acid- base balance, nucleotide synthesis	Weakness, loss of minerals from bone, calcium loss
	Sulfur (S)	Proteins from many sources	Component of certain amino acids	Impaired growth, fatigue, swelling
	Potassium (K)	Meats, dairy products, many fruits and vegetables, grains	Acid-base balance, water balance, nerve function	Muscular weakness, paralysis, nausea, heart failure
	Chlorine (Cl)	Table salt	Acid-base balance, formation of gastric juice, nerve function, osmotic balance	Muscle cramps, reduced appetite
	Sodium (Na)	Table salt	Acid-base balance, water balance, nerve function	Muscle cramps, reduced appetite
	(Magnesium (Mg)	Whole grains, green leafy vegetables	Enzyme cofactor; ATP bioenergetics	Nervous system disturbances
Iron (Fe)		Meats, eggs, legumes, whole grains, green leafy vegetables	Component of hemoglobin and of electron carriers; enzyme cofactor	Iron-deficiency anemia, weakness, impaired immunity
Flu	orine (F)	Drinking water, tea, seafood	Maintenance of tooth structure	Higher frequency of tooth decay
lodine (I)		Seafood, iodized salt	Component of thyroid hormones	Goiter (enlarged thyroid gland)

Dietary Deficiencies

- Malnutrition is a failure to obtain adequate nutrition
- Malnutrition can have negative impacts on health and survival
 - Deficiencies in essential nutrients can cause deformities, disease, and death
 - Cattle, deer, and other herbivores can prevent phosphorus deficiency by consuming concentrated sources of salt or other minerals
 - In children, protein deficiency may arise when their diet shifts from breast milk to foods containing very little protein

Concept 41.2: Food processing involves ingestion, digestion, absorption, and elimination

- Ingestion is the act of eating or feeding
- Feeding mechanisms differ widely among animal species

 Elimination is the passage of undigested material out of the digestive system

Digestive Compartments Most animals process food in specialized compartments These compartments reduce the risk of an animal digesting its own cells and tissues

Extracellular Digestion Extracellular digestion is the breakdown of food particles outside of cells It occurs in compartments that are continuous with the outside of the animal's body Animals with simple body plans have a gastrovascular cavity that functions in both digestion and distribution of nutrients

Concept 41.3: Organs specialized for sequential stages of food processing form the mammalian digestive system

- In mammals, a number of accessory glands secrete digestive juices through ducts into the alimentary canal
- Mammalian accessory glands are the *salivary glands*, the *pancreas*, the *liver*, and the gallbladder

The Oral Cavity, Pharynx, and Esophagus

- Food processing begins in the oral cavity
- Salivary glands deliver saliva to lubricate food
- Saliva contains mucus, a viscous mixture of water, salts, cells, and glycoproteins
- Saliva also contains **amylase**, which breaks down starch

- The small intestine is the longest compartment of the alimentary canal
- Most enzymatic hydrolysis of macromolecules from food occurs here
- The first portion of the small intestine is the duodenum
- Here, chyme from the stomach mixes with digestive juices from the pancreas, liver, gallbladder, and the small intestine itself

Figure 41.11				
	CARROHYDRATE DIGESTION			
ORAL CAVITY, PHARYNX,	Polysaccharides (starch, glycogen) Disaccharides (sucrose, lactose)			
ESOPHAGUS	Salivary amylase			
	Smaller Maltose polysaccharides			
STOMACH		Proteins		
		Pepsin		
		Small polypeptides	C ACID DIGESTION	
SMALL			DNA, RNA	Fat (triglycerides)
INTESTINE (enzymes	Pancreatic amylases	Pancreatic trypsin and	Provide the	
from	Disasaharidas	chymotrypsin	Pancreatic	
pancreas)	Disaccharides			
			Nucleotides	Pancreatic lipase
		Smaller polypeptides		
		Pancreatic carboxypeptidase		
		Small peptides		Glycerol, fatty acids, monoglycerides
SMALL		Dipeptidases, carboxy-	Nucleotidases	
(enzymes	Disaccharidases	peptidase, and	Nucleosides	
from		amnopeptidase	Nucleosidases	
epithelium)			and	
			phosphatases	
			Nitrogenous bases,	
	Monosaccharides	Amino acids	sugars, phosphates	
© 2017 Pearson Educ	ation, Inc.			

Absorption in the Small Intestine

- The small intestine has a huge surface area due to villi and microvilli that are exposed to the intestinal lumen
- The enormous microvillar surface creates a brush border that greatly increases the rate of nutrient absorption
- Transport across the epithelial cells can be passive or active, depending on the nutrient

The hepatic portal vein carries nutrient-rich blood from the capillaries of the villi to the liver, then to the heart
The liver regulates nutrient distribution, interconverts many organic molecules, and detoxifies many organic molecules

© 2017 Pearson Education, Inc.

Processing in the Large Intestine

- The alimentary canal ends with the large intestine
- It includes the colon, caecum, and rectum
- The colon leads to the rectum and anus
- The cecum aids in the fermentation of plant material and connects where the small and large intestines meet
- The human cecum has an extension called the appendix, which plays a minor role in immunity

Concept 41.5: Feedback circuits regulate digestion, energy storage, and appetite

 The processes that enable an animal to obtain nutrients are matched to the organism's circumstances and need for energy

Regulation of Energy Storage

- The body stores energy-rich molecules that are not needed for metabolism right away
- In humans, energy is stored first in the liver and muscle cells in the polymer glycogen
- Excess energy is stored in fat in adipose cells
- When fewer calories are taken in than expended, the human body expends liver glycogen first, then muscle glycogen and fat

© 2017 Pearson Education, Inc.

Glucose Homeostasis

- Synthesis and breakdown of glycogen are central to maintaining metabolic balance
- The hormones insulin and glucagon regulate the breakdown of glycogen into glucose
- The liver is the site for glucose homeostasis
 - A carbohydrate-rich meal raises insulin levels, which triggers the synthesis of glycogen
 - Low blood sugar causes glucagon to stimulate the breakdown of glycogen and release glucose

Type 1 Diabetes

- Type 1 diabetes is an autoimmune disorder in which the immune system destroys the beta cells of the pancreas
- It usually appears during childhood
- Treatment consists of insulin injections, typically several times per day

Type 2 Diabetes

© 2017 Pearson Education. Inc

- Type 2 diabetes, or non-insulin-dependent diabetes, is characterized by a failure of target cells to respond normally to insulin
- Excess body weight and lack of exercise significantly increase the risk of type 2 diabetes
- It generally appears after age 40, but may develop earlier in younger people who are sedentary

Regulation of Appetite and Consumption

- Overnourishment causes obesity, which results from excessive intake of food energy with the excess stored as fat
- Obesity contributes to type 2 diabetes, cancer of the colon and breasts, heart attacks, and strokes
- Researchers have discovered several of the mechanisms that help regulate body weight

 Hormones regulate long-term and short-term appetite by affecting a "satiety center" in the brain

- Ghrelin, a hormone secreted by the stomach wall, triggers feelings of <u>hunger</u> before meals
- Insulin and PYY, a hormone secreted by the small intestine after meals, both suppress appetite
- Leptin, produced by adipose (fat) tissue, also suppresses appetite and plays a role in regulating body fat levels

